Los Angeles [US], December 24 (ANI): The most lethal cancer in both the United States and the rest of the globe is lung cancer. Patients have few options because many of the currently available medicines are useless. Bacterial therapy has been a promising new approach to treating cancer, however even though this treatment method has swiftly advanced from laboratory studies to clinical trials in the last five years, the most efficient treatment for some types of malignancies may be in combination with other medications.
In order to characterise bacterial therapeutics in lung cancer models, Columbia Engineering researchers have created a preclinical evaluation pipeline. Their most recent research, which was released in the journal ‘Scientific Reports’ on December 13, 2022, mixed bacterial therapeutics with other therapy modalities to increase treatment efficacy while minimising side effects. With the use of this novel method, bacterial medicines could be quickly characterised and successfully incorporated into existing lung cancer targeted therapies.
“We envision a fast and selective expansion of our pipeline to improve treatment efficacy and safety for solid tumors,” said first author Dhruba Deb, an associate research scientist who studies the effect of bacterial toxins on lung cancer in Professor Tal Danino’s lab in Biomedical Engineering, “As someone who has lost loved ones to cancer, I would like to see this strategy move from the bench to bedside in the future.”
The team used RNA sequencing to discover how cancer cells were responding to bacteria at the cellular and molecular levels. They built a hypothesis on which molecular pathways of cancer cells were helping the cells to be resistant to the bacteria therapy. To test their hypothesis, the researchers blocked these pathways with current cancer drugs and showed that combining the drugs with bacterial toxins is more effective in eliminating lung cancer cells. They validated the combination of bacteria therapy with an AKT-inhibitor as an example in mouse models of lung cancer.
“This new study describes an exciting drug development pipeline that has been previously unexplored in lung cancer – the use of toxins derived from bacteria,” said Upal Basu Roy, executive director of research, LUNGevity Foundation, USA. “The preclinical data presented in the manuscript provides a strong rationale for continued research in this area, thereby opening up the possibility of new treatment options for patients diagnosed with this lethal disease.”
Deb plans to expand his strategy to larger studies in preclinical models of difficult-to-treat lung cancers and collaborate with clinicians to make a push for the clinical translation. (ANI)